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Abstract

Jacobi groupoids are introduced as a generalization of Poisson and contact groupoids and it is
proved that generalized Lie bialgebroids are the infinitesimal invariants of Jacobi groupoids. Several
examples are discussed.
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1. Introduction

A Poisson groupoid is a Lie groupoid = M with a Poisson structurd for which
the graph of the partial multiplication is a coisotropic submanifold in the Poisson manifold
(GxGxG,AdAD—A) (see[40)]). If (G = M, A) is a Poisson groupoid, then there
exists a Poisson structure @ such that the source projection: G — M is a Poisson
morphism. Moreover, iRGis the Lie algebroid o7, then the dual bundlg*G to AGitself
has a Lie algebroid structure. Poisson groupoids were introduced by Weif/¢ims a
generalization of both Poisson Lie groups and the symplectic groupoids which arise in the
integration of arbitrary Poisson manifolds. A canonical example of symplectic groupoid is
the cotangent bundIE*G of an arbitrary Lie groupoid: = M. In this case, the base space
is A*G and the Poisson structure driG is just the linear Poisson structure induced by the
Lie algebroidAG (se€[2]).
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In [30], Mackenzie and Xu proved that a Lie group@id= M endowed with a Poisson
structureA is a Poisson groupoid if and only if the bundle map#r'*G — TGis a mor-
phism between the cotangent group@ith; =2 A*G and the tangent groupoilc = TM.

This characterization was used in order to prove that Lie bialgebroids are the infinitesimal
invariants of Poisson groupoids, i.e. @ (= M, A) is a Poisson groupoid, theAG, A*G)

is a Lie bialgebroid and, conversely, a Lie bialgebroid structure on the Lie algebroid of a
(suitably simply connected) Lie groupoid can be integrated to a Poisson groupoid structure
[28,30,31](these results can be applied to obtain a new proof of a theorem of KafaSqev

and Weinsteirf39] about the relation between symplectic groupoids and their base Pois-
son manifolds). We remark that |B], Crainic and Loja Fernandes have given the precise
obstructions to integrate an arbitrary Lie algebroid to a Lie groupoid.

On the other hand, a contact groupdid & M, n, o) is a Lie groupoids = M endowed
with a contact 1-form; € £21(G) and a multiplicative functios € C*°(G, R) such that

Nigh (Xg ®16 Yi) = ng(Xg) + €Ony(Yy)  for (X,, V) € TG?,

where @1 is the partial multiplication in the tangent Lie groupolds = TM (see
[6,7,20,23]. Contact groupoids can be considered as the odd-dimensional counterpart of
symplectic groupoids and they have applications in the prequantization of Poisson man-
ifolds and in the integration of local Lie algebras associated to rank one vector bundles
(see[6,7]). In this case, the base spadecarries an induced Jacobi structure such that the
pair (o, €) is a conformal Jacobi morphism. Moreover, the presence of the multiplicative
functiono induces a 1-cocycleég € I'(A*G) in the Lie algebroid cohomology &G. We

note that the relation between Jacobi structures and Lie algebroids with 1-cocycles has been
recently explored itfi16] by the authors (see al$b2]). More precisely, we have obtained
that a Lie algebroid structure on a vector bundle> M and a 1-cocycleg € I'(A*), a
generalized Lie algebroid in our terminology, induce a Jacobi StruCtg: ¢q) Ea*,¢o))

on A* satisfying some linearity conditions. In addition, using the differential calculus on
Lie algebroids in the presence of a 1-cocycle, it has been introducf’jr(see also
[11,12) the notion of a generalized Lie bialgebroid in such a way that a Jacobi manifold
has associated a canonical generalized Lie bialgebroid. A generalized Lie bialgebroid is a
pair ((A, ¢o), (A*, X0)), where(A, ¢p) and(A*, Xp) are generalized Lie algebroids, such
that the Lie algebroid structures egnand A* and the 1-cocyclegg and X satisfy some
compatibility conditions. Whegg and X are zero, the definition reduces to that of a Lie
bialgebroid. We also remark that the theory of generalized Lie algebroids plays an important
role in the study of Lie brackets on affine bundles and its application in the geometrical
construction of Lagrangian-type dynamics on affine bundles[(<&82,36).

The aim of this paper is to integrate generalized Lie bialgebroids, i.e. to introduce the
notion of a Jacobi groupoid (a generalization of Poisson and contact groupoids), in terms
of groupoid morphisms, such that generalized Lie bialgebroids to be considered as the
infinitesimal invariants of Jacobi groupoids.

As in the case of contact groupoids, we start with a Lie grougoicz M, a Jacobi
structure(A, E) on G and a multiplicative functiom : G — R. Then, as in the case
of Poisson groupoids, we consider the vector bundle morphigne#: 7°G x R —

TG x R induced by the Jacobi structutd , E). The multiplicative functiors induces, in
a natural way, an action of the tangent groupd = TM over the canonical projection
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w1 : TM x R — TM obtaining an action groupoiiG = R over TM x R. Thus, it is
necessary to introduce a suitable Lie groupoid structuf&i@ x R over A*G and this is
the first important result of the paper. In fact, we prove that:

e If AG is the Lie algebroid of an arbitrary Lie groupo@ = M,o : G — Ris a
multiplicative function,7g : T*G x R — G is the canonical projection ang; is
the canonical contact 1-form di*G x R, then (*G x R = A*G, ng,o 0 71g) is a
contact groupoid in such a way that the Jacobi structuré 4 is just the linear Jacobi
structure(Aa+=g,¢0), E(A*G,¢0)) induced by the Lie algebroidG and the 1-cocycleg
which comes from the multiplicative functian(seeTheorems 3.7 and 3.1.0

Now, we will say that G = M, A, E, o) is a Jacobi groupoid if the map #g) :
T*G x R — TG x R is a Lie groupoid morphism over some map: A*G — TM x R.
Poisson and contact groupoids and other interesting examples are Jacobi groupoids. In
particular, Jacobi groupoid&;(= M, A, E, o), whereM is a single point are just the Lie
groups studied if18], whose infinitesimal invariants are generalized Lie bialgebras.

Onthe other hand, itf = M, A, E, o)is aJacobigroupoid, then we show that the vector
bundleA*G admits a Lie algebroid structure and the multiplicative functigrespectively,
the vector fieldE) induces a 1-cocycleg (respectively,Xg) on AG (respectively,A*G).
Thus, a first relation between Jacobi groupoids and generalized Lie bialgebroids can be
obtained and this is the second important result of our paper:

e If (G = M, A, E, o) is a Jacobi groupoid, thellAG, ¢o), (A*G, Xp)) is a generalized

Lie bialgebroid (se@heorem 5.4
Finally, a converse of the above statement is the third important result of the paper.

More precisely, we prove the following theorem.

e Let((AG, ¢p), (A*G, X)) be ageneralized Lie bialgebroid whé@is the Lie algebroid
of an a-connected and-simply connected Lie groupoid® = M. Then, there is a
unique multiplicative functiow : G — R and a unique Jacobi structutd, £) on G
that makegSG = M, A, E, o) into a Jacobi groupoid with generalized Lie bialgebroid
((AG, ¢0), (A*G, X0)) (seeTheorem 5.9

The two previous results generalize those obtained by Mackenzie af@Q@aL] for
Poisson groupoids and those obtained by the aufi8itdor generalized Lie bialgebras.

The paper is organized as follows.$ection 2 we recall several definitions and results
about Jacobi manifolds, Lie algebroids and Lie groupoids which will be used in the sequel. In
Section 3we prove thataLie groupoi@ = M (with Lie algebroidAG) and a multiplicative
functiono : G — R induce a Lie groupoid structure TG x R overTM x R and a contact
groupoid structure iM*G x R over A*G. In Section 4 we introduce the definition of a
Jacobigroupoid, giving some examples, and we prove some properties of these groupoids. In
Section Swe show that generalized Lie bialgebroids are, in fact, the infinitesimal invariants
of Jacobi groupoids.

Notation If M is a differentiable manifold, we will denote [&y~° (M, R) the algebra of
C™ real-valued functions oM, by £2X(M) the space ok-forms onM, by X(M) the Lie
algebra of vector fields, bythe de Rham differential of2* (M) = @& £2X(M), by L the Lie
derivative operator and byJthe Schouten—Nijenhuis bracké&t37]. Moreover, ifA — M
is a vector bundle ovelf and P € I'(A2A) is a section oiA2A — M, we will denote by
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#p : A* — A the bundle map given by(#p(w)) = P(x)(w, v) for w, v € A%, A% being
the fiber ofA* overx € M. We will also denote by #: I'(A*) — I'(A) the corresponding
homomorphism o°° (M, R)-modules.

2. Jacobi structures, Liealgebroidsand Lie groupoids
2.1. Jacobi structures

A Jacobi structureon a manifoldM is a pair(A, E), whereA is a 2-vector andt is a
vector field onM satisfying the following properties:

[A,A]=2EAA, [E, A]=0. 2.1)

The manifoldM endowed with a Jacobi structure is callegbgobi manifold A bracket of
functions (theJacobi bracketis defined by

{f g} = A(Sf 8g) + TE(g) — 9E(f)

forall £, g € C*°(M, R). In fact, the spac€>° (M, R) endowed with the Jacobi bracket is
alocal Lie algebrain the sense of Kirillov (sef1]). Conversely, a structure of local Lie
algebra onC*°(M, R) defines a Jacobi structure a# (see[13,21). If the vector fieldE
identically vanishes, thefM, A) is aPoisson manifoldsee[1,26,37,38].

Another interesting example of Jacobi manifolds comes from contact manifolds/ Let
be a 2 + 1-dimensional manifold ang a 1-form onM. We say tha{ M, ») is acontact
manifoldif n A (6n)" # 0 at every point (see e.f25,27]. A contact manifold M, n) is a
Jacobi manifold whose associated Jacobi strugtureF) is given by

A, v) = 810, @), b ), E =0,

for w,v € 2Y(M), b, : X(M) — £21(M) being the isomorphism af> (M, R)-modules
defined byb, (X) = i(X)én + n(X)n. Note thatE is theReeb vector fieldf M which is
characterized by the conditiong)n = 1 andi(E)én = 0. Moreover

by (@) = —#a(w) + @(E)E for w € Q1(M).

Jacobi manifolds were introduced by Lichnerowj2Z] (see alsg8,13]).

Remark 2.1. Let (A, E) be a 2-vector and a vector field on a manifédd Then, we can
consider the 2-vectan given by

A=¢"! <A+§/\E>, (2.2)

wheret is the usual coordinate oR. The 2—vect0~r/~\ is homogeneous with respect to
the vector fieldd/dr, i.e. Ly A = —A. In fact, if A is a 2-vector oM x R such that
Ly A = — A, then there exists a 2-vectdrand a vector fieldZ on M such thatA is given
by (2.2). Moreover,(A, E) is a Jacobi structure oif if and only if A defines a Poisson
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structure onV x R (see[27]). The manifold x R endowed with the structut is called
the Poissonization of the Jacobi manifoldf, A, E). If (A, E) is a Jacobi structure oM
induced by a contact 1-form, then the corresponding Poisson structdren M x R is
non-degenerate and is associated with the symplectic 2-foeme (57 + 81 A 1).

Before finishing this section, we will give a definition which will be useful in the follow-
ing.

Definition 2.2. Let S be a submanifold of a manifolt and A be an arbitrary 2-vectof
is said to be coisotropic (with respectty if # 4 ((T,S)°) C T, S for x € S, (T\S)° being
the annihilator space d&f, S.

Remark 2.3. If A (respectively(A, E))is a Poisson structure (respectively, a Jacobi struc-
ture) onM, then we recover the notion of a coisotropic submanifold of the Poisson manifold
(M, A)[25,40](respectively, coisotropic submanifold of a Jacobi manitad A, E) [15]).

2.2. Lie algebroids

A Lie algebroid Aover a manifoldM is a vector bundled over M together with a Lie
bracket [ ] on the spacd(A) of the global cross-sections df — M and a bundle map
o A — TM, called theanchor mapsuch that if we also denote hy. I'(A) — X(M) the
homomorphism o° (M, R)-modules induced by the anchor map, then:

) o:(IA),[,.1) = XM),[,) is a Lie algebra homomorphism and
(i) forall f € C*°(M,R) and for allX, Y € I'(A), one has

[X.£Y] = FIX, YT + (O ()Y.
The triple(A, [, 1, p) is called a Lie algebroid ove¥l (see[29,34).

A real Lie algebra of finite dimension is a Lie algebroid over a point. Another example
of a Lie algebroid is the tripléTM, [, ], Id), where M is a differentiable manifold and
Id : TM — TMis the identity map.

If Aisa Lie algebroid, the Lie bracket df{A) can be extended to the so-callechouten
bracket[[, ] on the spacd(A*A) = @, (A% A) of multi-sections ofA in such a way that
(@ I(A*A), A [L]) is a graded Lie algebra. In fact, the Schouten bracket satisfies the
following properties:

[X, f1 = p(X)(f), [P, 0l = (1P 0, P,
[P.OAR] =[P, Q] AR+ (-4 D Q A[P,R],
(_1)pr|[|[ P» Q]Iv R]I + (_1)qr|[|[ Rv P]I’ Q]I + (_1)pq|[|[ Qv R]I, P]I = 0
for X € I(A), f € C®°(M,R), P € I(APA), Q € (A1A) andR € (A" A) (se€[37]).

Remark 2.4. The definition of Schouten bracket considered here is the one gij&Jin
(see alsdl,26]). Some authors, see e[g2], define the Schouten bracket in another way.
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In fact, the relation between the Schouten brackgt fh the sense dR2] and the Schouten
bracket [ ] in the sense 0f37] is the following one. IfP € I'(APA) andQ € I(A*A),
then [P, Q1" = ()7 [P, Q.

On the other hand, imitating the de Rham differential on the sgzig@/), we define
the differential of the Lie algebroid Ad : I(AFA*) — I(AKt14*), as follows. Forw €
I(A¥A*) andXo, ..., X € T(A):

k
do(Xo. ... X = Y (=D p(X)(@(Xo, .. Ki. ... Xi)
i=0
+ Z(_l)[—‘r/w(l[xl’ X]]I’ XOa DR 5(17 U] X]5 s Xk)'
i<j

(2.3)

Moreover, since 8= 0, we have the corresponding cohomology spaces. This cohomology
is theLie algebroid cohomology with trivial coefficienfsee[29]).

Using the above definitions, it follows that a 1-cochaie I'(A*) is a 1-cocycle if and
only if

o[ X, Y] = p(X) (@) — p(N($(X))

forall X, Y € I'(A).
Next, we will consider some examples of Lie algebroids which will be important in the
following:

1. The Lie algebroidTM x R, [, ], 7)
If M is a differentiable manifold, then the tripl& x R, [, ], ) is a Lie algebroid
over M, wherer : TM x R — TMis the canonical projection over the first factor and
[, ]1is the bracket given by (s429,33)

[(X, 1), (Y. 9] = (X, Y], X(&) — Y(f)) (2.4)

for (X, 1), (Y, g) € X(M) x C®(M,R) = I'(TM x R).
2. The Lie algebroid(T*M x R, |[,]|(A,E),#(A,E)) associated with a Jacobi manifold
(M, AE)
A Jacobi manifold M, A, E) has an associated Lie algebreid*M x R, [,14.£).
#.1), where [ ](a.r) and# 4 g are defined by

|[((1), f)a (U, g)]l (AE)
= (Lity)V — Lityy — 8(A(@, ) + fLEY — gLgw — i(E) (@ A v), A(v, ®)
+Ha(w)(g) — #4 (W) (f) + TE(g) — 9E(f)), #a.6) (@, f) =#a(w) +E
(2.5)
for (w, f), (v, g) € QY M) x C®°(M,R) = I(T*M x R), £ being the Lie derivative

operator (se¢20]). In the particular case whef, A) is a Poisson manifold we re-
cover, by projection, the Lie algebro{d@™* M, [, ] 4, #4), where [, ] 4 is the bracket of
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1-forms defined by, vl 4 = L, @)V — Lty @ — 8(A(w, v)) for w, v € 21(M) (see
[1,2,9,37).
. Action of a Lie algebroid on a smooth map

Let (A,[,], p) be a Lie algebroid over a manifold andx : P — M be a smooth
map. An action ofA onz : P — M is aR-linear map

. [(A) - X(P), X eI(A) — X* € X(P)
such that
fX)* = (fomX*, [x Y]* =[Xx*Y"], 7l (X*(p)) = p(X (7(p)))

for f € C*°(M,R), X,Y € I'(A) andp € M. If x: I'(A) — X(P) is an action ofA on
7. P— Mandt: A — M is the bundle projection, then the pullback vector bundle
of A overr:

7*A = {(a, p) € A x P/1(a) = n(p)}

is a Lie algebroid oveP with the Lie algebroid structurd, ], po») which is charac-
terized by

p=(X)(p) = X*(p), [X. Y] =[X.Y]or

forX,Y € I'(A)andp € P.Thetriple(w*A, [, 1=, o) is called theaction Lie algebroid
of Aonx and itis denoted by x 7 or A x P (seg[14]).
. The Lie algebroid associated with a linear Poisson structure

Lett : A — M be avector bundle on a manifoM. Then, it is clear that there exists
a bijection between the spaé¢&A*) of the sections of the dual bundté : A* — M
and the set(A) of real functions orA which are linear on each fiber:

[(A*) = L(A), v— 0.

Now, suppose thatl is a linear Poisson structure enwith Poisson brackef, }. This
means that the Poisson bracket of two linear functiond asmagain a linear function.
This fact implies that the Poisson bracket of a linear functiom@nd a basic function
is a basic function. Moreover, one may define a Lie algebroid strugfurk p) on
™ 1 A* — M which is characterized by

[v.ul = .4} p(foTr=1{ for) (2.6)

forv, u € I'(A*) and f € C*°(M, R) (see[2,3]). Conversely, ifA is a vector bundle
over M and the dual bundld* admits a Lie algebroid structuc§, ], p), then one may
define a linear Poisson bracKet on A in such a way thaf2.6) holds.
. The tangent Lie algebroid

Let (M, A) be a Poisson manifold. Then, the complete Jift of A to the tangent
bundleTM defines a linear Poisson structureTivi (se€]3,35]). A is called theangent
Poisson structure

Now, suppose that : A — M is a Lie algebroid over a manifolsf and thatp :
A* xyr A — Risthe natural pairing. TheAandTA* are vector bundles ov@iM and
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p induces a non-degenerate pairifg* xtv TA — R. Thus, we get an isomorphism
between the vector bundldA and (TA*)*. Therefore, the dual bundle TPA — TM

may be identified witiTA* — TM. On the other hand, sinc&* is a Poisson manifold,

we have thafTA* admits a linear Poisson structure. Consequently, the vector bundle
TA — TMis a Lie algebroid which is called thangent Lie algebroido A (for more
details, se¢4,30]).

2.3. Lie groupoids

A groupoidconsists of two set§ andM, called, respectively, thgroupoidand thebase
together with two mapea and g from G to M, called, respectively, theourceandtarget
projections, a map : M — G, called theinclusion a partial multiplicationn : G@ =
{(g,h) €e GxG/a(g) = B(h)} > Gandamap: G — G, called theénversion satisfying
the following conditions:

(i) a(m(g, h)) = a(h) andB(m(g, h)) = B(g) forall (g, h) € G,
@iy m(g,m(h, k) =m@m(g, h), k) forall g, h, k € G such thaw(g) = B(h) anda(h) =
B(k),
(i) a(e(x)) = xandB(e(x)) = xforall x € M,
(V) m(g, e(e(g))) = g andm(e(B(g)), g) = gforall g € G,
(V) m(g,(g)) = €(B(g)) andm(i(g), g) = e(a(g)) forall g € G.

A groupoidG over a bas&/ will be denoted byG = M. Given two groupoid&;; = M;
andG2 = M, amorphism of groupoids a pair of mapsd : G; — G and®g : M1 —
M> which commute with all the structural functionsGf andG», i.e.a2 o ® = &g o ag,
B2o® = dgo 1 andd(gih) = D(g1)@(hy) for (g1, h1) € G (for more details, see
[29]). If G andM are manifolds(G = M is alLie groupoidif:

() « andpg are differentiable submersions,
(ii)y m, e and. are differentiable maps.

From now on, we will usually writgh for m(g, h), g_l for «(g) andx for e(x). More-
over, if x € M, thenG, = a~1(x) (respectivelyG* = B~1(x)) will be said thex-fiber
(respectively, thes-fiber) of x. Furthermore, since is an inmersion, we will identify\M
with e(M).

Next, we will recall some notions related with Lie groupoids which will be useful in the
following (for more details, seR9]).

Definition 2.5. Let G = M be a Lie groupoid over a manifoltf. ForU € M open,
a local bisection (or local admissible section)®@fon U is a smooth maiC : U — G
which is right-inverse tg8 and for whicha o £ : U — «(C(U)) is a diffeomorphism
from U to the open sax(C(U)) in M. If U = M, K is a global bisection or simply a bi-
section.

The existence of local bisections through any pgiat G is always guaranteed.
If :U — G is alocal bisection witlV = (« o K)(U), the localleft-translationand
right-translationinduced byk are the mapé i : ~%(V) — B~1(U) andRx : o 1(U) —
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a~1(V), defined by

Lic(g) = K((@ o K)"X(B)))sg, Ric(h) = hK(a(h))
for g € B~1(V) andh € a~1(U).

Remark 2.6. If ygp € U andX(yg) = go, a(go) = xo, then the restriction of. - to G*0 is
the left-translation byg:

Lg :G™ — G°  h> Lgy(h) = goh.
In a similar way, the restriction akx to Gy, is the right-translation byo:
Rgo . Gyo — Gxos g = Rgo(g) = gg)

A multivector field P on G is said to béeft-invariant(respectivelyright-invariani) if it is
tangent to the fibers ¢f (respectivelyx) and P(gh) = (LK)Z(P(h)) (respectivelyP(gh) =
(Rx)$(P(g))) for g, h € G andK : U — G any local bisection through (respectively,
g). If P andQ are two left-invariant (respectively, right-invariant) multivector fields®n
then [P, Q] is again left-invariant (respectively, right-invariant).

Now, we will recall the definition of the Lie algebroid associated with a Lie groupoid.

Suppose that = M is a Lie groupoid. Then, we may consider the vector buAdie—

M, whose fiber at a point € M is A,G = T;G*. It is easy to prove that there exists a
bijection between the spa¢€AG) and the set of left-invariant (respectively, right-invariant)
vector fields onG. If X is a section ofAG, the corresponding left-invariant (respectively,
right-invariant) vector field oz will be denoted by? (respectively,?). Using the above
facts, we may introduce a Lie algebroid structdfe] , p) on AG, which is defined by for
X,Y € I'(AG) andx € M:

[(XYT=[X.7Y]. pO® =ai(X). (2.7)

Remark 2.7. There exists a bijection between the spate*(AG)) and the set of left-
invariant (respectively, right-invarianf-vector fields. If P is a section ofAk(AG), we
will denote by<17 (respectivelyfF) the corresponding left-invariant (respectively, right-
invariant)k-vector field onG. Moreover, if P, O € I(A*(AG)), we have that

[P ol=[P. 01l (2.8)

Example 2.8.

(1) Lie groups
Any Lie group G is a Lie groupoid ovefe}, the identity element of;. The Lie
algebroid associated witfi is just the Lie algebrg of G.
(2) The banal groupoid
Let M be a differentiable manifold. The product manifdlix M is a Lie groupoid
over M in the following way:« is the projection onto the second factor ghés the
projection onto the first factog(x) = (x, x) for all x € M andm((x, y), (y,z)) =
(x,2). M x M = M is called thebanal groupoid The Lie algebroid associated with
the banal groupoid is the tangent bundiid of M.
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(3) The direct product of Lie groupoids
If G1 = M1 andG> = M are Lie groupoids, theG1 x G2 = My x M>is a Lie
groupoid in a natural way.
(4) Action groupoids
Let G = M be a Lie groupoid and : P — M be a smooth map. IP « G =
{(p,g) € P x G/n(p) = B(g)}, then aright action of; on is a smooth map:

PxG — P, (P, = p-8
which satisfies the following relations:
n(p-g)=a(g) forall (p,g) e PxG,
(p-g)-h=p-(gh forall (g.h)eG? and (p,g) e PG,
p-nﬂ(};)zp forall p e P.

Given such an action one constructs #ugion groupoidP « G = P by defining

dp.o=pr-g Bpg=p mpg (qh) =g if g=p-g,
€(p)=(p.etx(p)). (p.)=(p-g.&M.
Now, if p € P, we consider the map, : G™") — P given by
(8 =p- &
Then, ifAGis the Lie algebroid of5, theR-linear map:
*: I(AG) — X(P), X e [AG) — X* € X(P)
defined by

X*(p) = ()P (X (x(p))) forall pe P (2.9)

induces an action AGonx : P — M. In addition, the Lie algebroid associated with
the Lie groupoidP x G = P is the action Lie algebroidG x 7 (for more details, see
[14]).
(5) The tangent groupoid
Let G = M be a Lie groupoid. Then, the tangent bund@@is a Lie groupoid over
TM. The projectionst', 8T, the partial multiplicatior®Tg, the inclusione” and the
inversion.” are defined by

a’(Xg) = af(Xy), BT (X,) = BS(X,) for X, € T,G,

X, @16 Y5 = mE" (Xe. Yi) for (X, ¥y) € (TG)2,) = Tiun G,

€'(X,) = €(X,) for X, e T M, T(Xy) = (X)) for X, € T,G.
(2.10)

In [42], it has been given an explicit expression for the multiplicatiaie. If of (X) =
BE(Xy) = Wy, x = a(g) = B(h), then

X, ®16 Y = (LX) + (RYE(X) — (L) (Ry)L(eE(W))), (2.11)
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whereX, Y are any (local) bisections @ with X(x) = g and)(x) = h. The tangent
Lie algebroidTAG — TMis just the Lie algebroid associated with the tangent groupoid
TG = TM (for more details, sef30]).

Remark 2.9. If G is a Lie group then, froni2.11), it follows that
X, @16 Vi = (L) (Yp) + (Ry)$(X,) for X, € T,G and Y, € T),G. (2.12)

(6) The cotangent groupoid
Let G = M be a Lie groupoid. IfA*G is the dual bundle t&G, then the cotan-
gent bundleT*Gis a Lie groupoid overd*G. The projectionsy and 3, the partial
multiplication®7+¢, the inclusior€ and the inversiofi are defined as follows:

#(we)(X) = wg(Ly L (X)) for w, € TYG and X € Ay(y)G.

B @) = v (Ry)EP (v — £ (P (1)))) for ve TG and ¥ € Agn G,
(0g ®1+G Vi) (Xg BTG Vi) = wg(Xg) + vp(Yy) for (Xg, Yi) € TenyG@,
&) (X3) = 0y (X5 — €5(B5 (X)) for w, € A*G, Xz €Tz € G and x € M,

-1
Uwg) (X g-1) = =g (1 (Xy-1))
for w, € T,G and X,1G and X1 € T,1G. (2.13)

Note thatée(A*G) is just the conormal bundle aff = ¢(M) as a submanifold of;.

On the other hand, sinc&* G is a Poisson manifold, the cotangent buritif€ A*G)
is a Lie algebroid. In fact, the Lie algebroid of the cotangent Lie groupb@d = A*G
may be identified witlf™*(A*G) (for more details, seR,30]).

Remark 2.10. If G is a Lie group ana, € T;G, v, € T,/ G satisfya(wg) = B(vy) then,
from (2.12) it follows that

wg ®1+6 v = SR DI (@g) + (LI (o)) (2.14)
2.4. Generalized Lie bialgebroids

In this section, we will recall the definition of a generalized Lie bialgebroid. First, we
will exhibit some results about the differential calculus on Lie algebroids in the presence
of a 1-cocycle (for more details, sgEr]).

If (A,[.],p) is a Lie algebroid oveM and, in addition, we have a 1-cocyclg €
I'(A*), then the usual representation of the Lie algdii4) on the spac€°° (M, R) can be
modified and a new representation is obtained. This representation is gipgy(BY () =
p(X)(f)+do(X) ffor X € I'(A) andf € C*(M, R). The resulting cohomology operator
dy, is called thepo-differential of A and its expression, in terms of the differential d4Af
is

dpow = dw + ¢o A @ (2.15)
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for w € N(AKA*). Thego-differential of A allows us to define, in a natural way, the-Lie
derivative by a sectio’X € I(A), (Lg,)x : T(AFA*) — I(A¥A*), as the commutator

of dg, and the contraction by, i.e. (L4,)x = dg, 0 i(X) + i(X) o dg, (for the general
definition of the differential and the Lie derivative associated with a representation of a Lie
algebroid on a vector bundle, si9]).

On the other hand, imitating the definition of the Schouten bracket of two multilinear
first-order differential operators on the spac&6f real-valued functions on a manifold
(see[1]), we introduced théo-Schouten bracket of a-sectionP and ap’-sectionP’ as
the (p + p’ — 1)-section given by

[P. PNy =[P. P11+ (D" (p—DP A (i(¢p0) P) — (p — D(i(¢o)P) A P,
(2.16)

where [, ] is the usual Schouten bracket af(some properties of thg-Schouten bracket
were obtained ifil 7]). Moreover, using theg-Schouten bracket, we can define thelLie
derivative of P € I'(AFA) by X € I'(A) as

(Lyg)x(P) =[X, P (2.17)

Remark 2.11. The product manifoldi = A x TR is a vector bundle ove¥ x R and one
may define a Lie algebroid structu¢g, ] =, p) on A, where [ ]~ is the obvious product
Lie bracket angp = p x id : A — TM x TR. The direct sum(A?A) & I(AP~1A) is
a subspace of (A?A) and we may consider the monomorphism@® (M, R)-modules
Ugo = T(APA) — I[(APA) given by Uy, (P) = (e~ P~D'p, e=P=Dij(gg)(P)). Then, it
is easy to prove thalls, ([ P, P1g) = [Upy(P), Upy(P)H]™ for P € I(APA) and P’ €
(AP A) (se€[11)).

Now, suppose thatA, [, ], p) is a Lie algebroid and thatg € I'(A*) is a 1-cocycle.
Assume also that the dual bundié& admits a Lie algebroid structukg, ] , o«) and that
Xo € I'(A) is a 1-cocycle. The paif(A, ¢o), (A*, X0)) is ageneralized Lie bialgebroid

d*XoI[Xv Y]I = I[X, d*XOY]I¢0 - I[Y, d*XOX]I(bOs (‘C*Xo)(bop + (£¢0)X0P =0
(2.18)
for X,Y € I'(A) and P € I(APA), where dy, (respectivelyL.x,) is the Xo-differential

(respectively, the&Xo-Lie derivative) ofA*. Note that the second equality (8.18)holds if
and only if

¢o(Xo) =0, p(X0) = —p«(¢0), (Lsx0)poX + [ X0, X] =0 (2.19)

for X € I'(A) (see[17]). Very recently, an interesting characterization of generalized Lie
bialgebroids has been obtained by Grabowski and Mdfrhbas follows. If we consider
the bracket [], of a p-sectionP and ap’-sectionP’ as the(p + p’ — 1)-section given by

[P, P’]I/d)0 = (=P P P] #0» then((A, ¢o), (A*, Xo)) is a generalized Lie bialgebroid
if and only if d.x, is a derivation of @ (A% A), [, ]I);so)- ie.

dexol P. P'1y, = [duxo P. PNy + (= DP TP, duxo P']},
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for P € I(APA) and P’ € T'(A*A). In the particular case whefy = 0 and Xy = O,
(2.18)is equivalent to the condition.fiX, Y] = [X, d.Y] — [¥, d.X]. Thus, the pair
((A,0), (A*, 0)) is a generalized Lie bialgebroid if and only if the péi, A*) is a Lie
bialgebroid (se¢22,30).

Onthe other hand, ifM, A, E) is a Jacobi manifold, then we proveditv] that the pair
(TMx R, ¢p), (T*M x R, Xp)) is a generalized Lie bialgebroid, whetgandXg are the
1-cocycles oMM x R and7T*M x R given by

$o=(0,1) € 2X(M) x C®°(M,R) = I(T*M x R),
Xo = (—E,0) € X(M) x C®(M,R) = I(TM x R).

As a kind of converse, we have the following result.

Theorem 2.12 (Iglesias and Marrerfl7]). Let ((A, ¢o), (A*, Xo)) be a generalized Lie
bialgebroid over M. Thenthe bracket of functiong, }o : C*°(M,R) x C*°(M,R) —
C*>®(M, R) given by

{f glo= dd)of : d*Xog for fge Coo(M’ R)

defines a Jacobi structure on.M

If (Ao, E) is the Jacobi structure o associated with the Jacobi bracke}o, then
#0(w0) = (0™ (w0)), Eo = po(¢o) = —p(Xo0) (2.20)

for wg € Y (M), p* 1 QY(M) — I'(A*) being the adjoint operator of the anchor map
p: I(A) - X(M).

Next, we will recall the construction of the Lie bialgebroid associated with a generalized
Lie bialgebroid (for more details, s¢&7]).

Let (A, [, 1, o) be a Lie algebroid oved and¢g € I'(A*) be a 1-cocycle. Then, there
exists two Lie algebroid structures on the vector buntlle A x R — M x R. First, we
consider the map : I'(A) — X(M x R) given by

3
X* = p(X) o 71+ (¢o(X) o 1) = (2.21)

whererr; : M x R — M is the canonical projection onto the first factor. It is easy to prove
thatx is an action ofA on; (seeSection 2.2 Thus, ifz] A is the pull-back ofA overmy,
then the vector bundle;A — M x R admits a Lie algebroid structurg, 1%, p%0). It

is clear that the vector bundle$A — M x R andA = A x R — M x R are isomorphic

and that the space of sectiof§A) of A — M x R can be identified with the set of
time-dependent sections af — M. Under this identification, the Lie algebroid structure
([, 1%, p%) is given by

- .. . 9y . X - - - 9
[X, ¥17% =[X, Y1~ +¢o(X)§ - ¢0(Y)§, 7 (X) = p(X) +¢o(X)§
(2.22)
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for X, ¥ e I'(A), where([,]~, p) is the Lie algebroid structure ar; A defined by the
zero 1-cocycle andX/dr (respectivelydY /or) denotes the derivative df (respectively,
Y) with respect to the time.

Now, let¥ : A — A be the isomorphism of vector bundles over the identity defined
by ¥(v,f) = (€v,1) for (v,/) € A x R = A. Using ¥ and the Lie algebroid struc-
ture ([, ] %, p%), one can introduce a new Lie algebroid struct(fre] “%°, 5%0) on the
vector bundleA — M x R in such a way that the Lie algebroidd, [,] %, %) and
(A, [,]"?%, p%0) are isomorphic. We have that

[X, Y] =e! <[X Y1~ + ¢o(X) (—j - Y) do(Y) <— - x))

. - <. 0
prx) =€ <p(X) + ¢o(X)§) (2.23)
forall X, ¥ e I'(A). Moreover, one may prove the following result.

Theorem 2.13 (Iglesias and Marrerfl7]). Let ((A, ¢o), (A*, X0)) be a generalized Lie
bialgebroid and(A, E) be the induced Jacobi structure on. lonsider OnA = A x
R (respectively A* = A* x R) the Lie algebroid structurg][, ] %0, p%) (respectively
([.127°, p®). Then

(i) The pair(A, A*) is a Lie bialgebroid oveM x R.
(ii) If A is the induced Poisson structure @i x R, then A is the Poissonization of the
Jacobi structurg A, E).

3. Contact groupoidsand 1-jet Lie groupoids

First, we will recall the notion of a contact groupoid.

Definition 3.1 (Kerbrat and Souici-Benhammaf#i0]). Let G = M be a Lie groupoid,
n € 2Y(G) be a contact 1-form ov ando : G — R be an arbitrary function. p1g is
the partial multiplication in the Lie groupoitiG = TM, we will say thattG = M, n, o) is
a contact groupoid if and only if

Ngh(Xe 76 ¥i) = ng(Xo) +€©np(¥y)  for (X, Ye) € TGP, (3.1)

Remark 3.2. Actually, the definition of a contact groupoid giver{#0] is slightly different
to the one given here. The relation between both approaches is the following 6Ge=f
M, 6, k) is a contact groupoid in the sense of Kerbrat and Souici-Benham@@idithen
(G = M, n, o) is a contact groupoid in the sense@éfinition 3.1, whereo(g) = «(g~ 1)

for ¢ € G, andn; is the inverse of,-1 in the Lie groupoidl™ = A*G.

If (G = M, n, o) is a contact groupoid then, using the associativitygef, we deduce
thato : G — R is a multiplicative function, i.e.:

o(gh) = o(g) + o(h) 3.2)
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for (g,h) € G@. In particular,oicmy = 0 and therefore, using3.1), it follows that
nz(€i(Xy)) = 0forx € M andX, € TyM. Thus, ift : G — G is the inversion 0fG,
we obtain that*n = —e™ 5. This implies thatG is a contact groupoid in the sense[d}.
Using this fact, we deduce the following result.

Proposition 3.3. Let (G = M, n, o) be a contact groupoid and suppose tltin G =
2n+1.Then

(i) If g and h are composable elements g have that
(6n)gh(Xg BTG Yi, Xy @716 V) = (50) (X, Xp) + €9 (8mn (Yi, ¥)
+ & (X (@ (Y)) =X (@ (Yy))  (3.3)

for (X, Ya), (X}, ¥;) € TG2.
(i) M = e(M) is a Legendre submanifold of Ge.e*n = 0 anddime(M) = dimM = n.
(i) If (A, E) is the Jacobi structure associated with the contadorm 5, then E is a
right-invariant vector field on G and:(¢) = 0. Moreover if Xg € I'(AG) is the
section of the Lie algebroid AG of G satisfyifig= —X o, we have that

#4(0) = Xo— € Xo. (3.4)

(iv) IfaT, BT andeT (respectivelya, B and<) are the projections and the inclusion in the
Lie groupoid TG= TM (respectivelyT*G = A*G), then

€ % 0c0a=c oa' o#y, #AOEO,B:ETO,BTO#A.

Proof. Using the results ifi7], we directly deduce (i), (ii) and (iii).
Now, we will prove (iv). Suppose that, € 7, G. Then, from (ii), we conclude that

Naze) (€ T84 (E(@(,))) = 07 (€1 (@ (#a(5)))) = 0.

Furthermore, ifX,(5) € Au(g)G, it follows that

X (@8 (Ha(wg))) = 5 (Ha(wyg)) BTG H#a(y),

Xa(g) = 01,16 BTG (L)2® (Xa(e)

and consequently, using.13), (3.1), (3.3) and (3.4nd the fact that is a multiplicative
function, we obtain that

(817 (€49 (@ 4 (@9))). Xatg) = (175 (€ " O#AE(@(y))). Xagg)).
On the other hand, frorf2.13)and (ii), we deduce that
(81 g7 (€% (@S (#a(@9))). €£C (Ya(e))
= (81 g75) (€77 #A (E(@(@))). €2 (Yu())) = O

for Ya(e) € T M.
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The above facts imply thal (o (#4 (0,))) = €7@ #, (E(@(wy))). In a similar way, one
may prove that #((B(w,))) = €' (BT (#a(wy))). U

Using again the results {i7], we have the following proposition.

Proposition 3.4. Let (G = M, n, o) be a contact groupoid an&| (G) be the set of
left-invariant vector fields on (GDenote by(A, E) the Jacobi structure on G associated
with the contaci-formn, by Xg € I'(AG) the section of the Lie algebroid AG of G satisfying
E=—XoandbyZ: QL(M) x C*(M,R) — X(G) the map defined by

T(wo, fo) = #a (€ a*wp) — (o fo) X 0. (3.5)
Then

() Zdefinesanisomorphism6f° (M, R) modules between the spasgy M) x C® (M, R)
and X, (G).

(i) The base manifold M admits a Jacobi structure, Eo) in such a way that the projec-
tion g is a Jacobi antimorphism and the pdit, €) is a conformal Jacobi morphism
ie.

Ao(a(9)) = €®ai(Ag)),  Eola(g) = ai(Xer (g)),
A(B(9)) = —B5(A0(g)),  Eo(B(g) = —BE(E(9)) (3.6)

forall g € G, whereXe = €°#,(80) + €’ E is the Hamiltonian vector field of the
functione” with respect to the Jacobi structuca, E).

(i) The mafinduces an isomorphism between the Lie algebr@ida/ x R, [, 1(4,.E0)
#(AO,EO)) and AG

Remark 3.5. Denote also by : T*M x R — AG the Lie algebroid isomorphism induced
by the isomorphism of (M, R)-modulesZ : 21(M) x C®(M,R) — X_(G). Then,
from (3.5)and sincer is a multiplicative function, it follows that

L(wx, ¥) = #a (@) (@,)) — yXo(x) (3.7)
for (wy, y) € Ty M x R.
Now, letG = M be a Lie groupoid and : G — R be a multiplicative function. Then,

there exists a natural right action of the tangent groud&d—= TM on the projection
w1 TM x R — TM given by

(Ux, A) - Xg = (vy, Xg(0) + 1)
for (vy, 1) € TMxRandX, € T,G satisfyingﬂT(Xg) = m1(vy, A) (SeeExample 2.8 The
resulting action groupoid is isomorphicEG&x R = TMx R with projectionga),, (87,
partial multiplication®tgxgr, inclusion(e™), and inversior(:"), given by

(@Ne(Xg, 2) = (@ (Xy), Xg(0) + 1) for (Xg, 1) € T,G x R,

(BN (T, 1) = (BT(Yp), ) for (Y, p) € T,G x R,

(Xg, 1) ®T6xR (Yo ) = (X ®16 Vi, A) if (@) (Xg, 1) = (BNo(Yn, 1),
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(€o (X, A) = (€' (Xy), A) for (Xy,A) € TuM x R,
(No(Xg, 2) = (1T (Xy), Xg(0) + 1) for (Xg, 1) € T,G x R. (3.8)

Now, suppose thaiG = M, 1, o) is a contact groupoid. Sinegis a contact 1-form, the
map #sy,n : TG x R — T*G x R given by

Hesnm (Xg, A) = (—i(Xg)(8n)g — Ang, 1g(Xy)) (3.9)

is an isomorphism of vector bundles. The inverse mapf # is the homomorphism
#4,p) TG x R — TG x R defined by

#.6) (g, Y) = Halwg) + VE(g), —wg(E(g))), (3.10)

where(A, E) is the Jacobi structure associated with the contact 1-fprm
On the other hand, il *G is the dual bundle to the Lie algebrodd then, since(M) is
a Legendre submanifold @f, the mapyo : TM x R — A*G given by

Yo(Xx, &) = (—i(x(X)) 6Nz — Anpja,c  for (Xx, 2) € M xR (3.11)

is an isomorphism of vector bundles. Note tha} #)(e; (Xx), 1) = (€(Yo(X,, 1)), 0) and
thus the inverse magy : A*G — TM x R of v is defined by

o) = (o} (#a(E(@y)), —wx(Ex — €5 (BL(Ex))). (3.12)

€ ! A*G — T*G being the inclusion of identities in the Lie groupdidG = A*G.
Next, we consider the maps;, B, : TG x R - A*G, &, : A*G — T*G x R and

o : TG xR — T*G x R given by

&o =00 (@) o).  Bo=w00(B)soHaL.

€ = #(677,77) © (GT)U © 90, lo = #(67],77) o (‘T)U o#A.E) (3.13)
and the partial multiplicatiomd 7+« r defined as follows. {w,, y), (vy, ) € T*G x R
satisfyd, (wg, ¥) = Bo (v, ), then

(wg, V) ®1+GxR (i, ) = Hin,m FHa, By (g, V) ®T1exR #a,E) (Vi) ). (3.14)

Itis cleard,, By, &, I and the partial multiplicatiom -« are the structural functions
of a Lie groupoid structure ifi*G x R overA*G. In addition, the map#i g) : TG xR —
TG x Ris a Lie groupoid isomorphism ovep : A*G — TM x R.

Lemma3.6. If &, B, ®r+¢, € andi are the structural functions of the Lie groupdid G —
A*G, we have that

do(wg. Y) =€ ®@a(wy) for (w,.y) € T;G xR,

Bo (i, §) = Bon) — 660 gy ane fOT (Vi 0) € TG x R,

(g, Y) Br+xR (V2 0) = (g + €€ 1(80)) Brec (€W vy, y + €90),

Eo(wy) = (€(wy), 0) for wy € A%G,

Io(wg, ¥) = (€7® (((wg) — ¥(80) 1), —€7®y) for (wg.y) € T;G x R.

(3.15)
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Proof. A long computation, using2.13), (3.1), (3.2), (3.8)—(3.14nd Proposition 3.3
proves the result. O

Note that the map8,, B., & I», and the partial multiplicatiom«¢ g do not depend
on the contact 1-form. In fact, one may prove the following result.

Theorem 3.7. Let G = M be an arbitrary Lie groupoid with Lie algebroid AG and
o : G — R be a multiplicative function. Then

(i) The product manifold™*G x R admits a Lie groupoid structure over*G with struc-
tural functions given by3.15)

(ii) If n¢ is the canonical contact-form on7*G x R and7wg : T*G x R — G is the
canonical projectionthen(T*G x R = A*G, ng, o o ) is a contact groupoid

Proof. Sinceo is a multiplicative function, we obtain that
o =0. (3.16)

Moreover, if(g, h) € G anda(g) = B(h) = x € M then, from(2.13), it follows that

a((30)g) = B((80)n) = (80)314,G» (80)gh = (80)g B1+G (30)h. (3.17)
In addition, using agaif2.13)and the fact that is a multiplicative function, we have that
€((80)z14,6) = (80)z, 1((80)¢) = (80) g1 (3.18)

forx e M andg € G.

Thus, from(3.15)—(3.18)we deduce (i).

Now, letG x R = M be the semi-direct Lie groupoid with projectioas g’ partial
multiplicationm’, inclusione’ and inversion’ defined by

o' (g, ) = alg), B (g, v) =Bk for (g y) €G xR,

m'((g.7), (h,9) = (ghy +€¥¢) for ((g, 1), (h, D) € (G x R)P,

€(x) = (e(x),0) for x e M,

/(8. 9) = (u(g), —e"®y) for (3.) € G xR. (3.19)

Using (3.19) one may prove that the partial multiplicatiéby «g) in the tangent Lie
groupoid7(G x R) = TMis given by

0 d
X —_— Y —
( g+1/f3t|y) DTGxR) ( [ +¢8t|¢)

= (Xg @16 Vi) + (¥ + € (X (0) + 9)) (3.20)

3t|y+eﬂ(g); -

Next, we consider the map; : TG x R — G x R given by

TG (wg, y) = (mG(wg), y) for (wg, y) € T;G x R,
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whererg : T*G — G is the canonical projection. Fro(8.15) and (3.19)we deduce that
7 is a Lie groupoid morphism over the m&p : A*G — M defined by

Folwy) = x  for wy € A}G.

Therefore, the tangent map#g;, T7g : T(T*G x R) — T(G x R), given by
d

Trg (Xwg + Wa”
Y

ad
) = O ) ¥ (3.21)
tly
for Xe, + %9/, € Tw,.»(G x R) is also a Lie groupoid morphism (over the map
Tro : T(A*G) — TM) between the tangent Lie groupoi@iéT*G x R) = T(A*G) and
(G x R) = TM.
On the other hand, ifig is the canonical contact 1-form di*G x R, thenng =
AG — 8t, L being the Liouville 1-form orf*G and (se€3.21)
d ad wg
NG ) | Xog TV | =26y (Xw,) = 8ty | Y | = 0g((m6)s” (Xo,)) — ¥
otl, orl,

ad
= (wg — 8t|)) (Tﬁ(; <Xwg + w—)) . (3.22)
ot|,
Thus, using(3.15), (3.20)-(3.22and the fact thaf'7 is a Lie groupoid morphism, we
conclude that

eg(g )

NG (0g.1)Br+Gxr 1) = NG(wg,y) PT+T*GxR) (€7 NG (1,,0)s

i.e. (T*G x R = A*G, ng, o) is a contact groupoid, whe#e € C*°(T*G x R) is the
function given byo = o o 7. O

Remark 3.8. Let G = M be a Lie groupoidy : G — R be a multiplicative function and
TGxR =3 TMx R, T*G x R = A*G be the corresponding Lie groupoids with structural
functions given by(3.8) and (3.15)If o identically vanishes then we recover, by projection,
the Lie groupoiddG = TMandT*G = A*G (seeExample 2.8.

Remark 3.9.

(i) A Lie groupoidG = M is said to be symplectic i admits a symplectic 2-forrf2 in
such away that the graph of the partial multiplicatiowiiis a Lagrangian submanifold
of the symplectic manifoldG x G x G, 2 ® 2 ® (—£2)) (see[2]). If G = M is an
arbitrary Lie groupoid with Lie algebroidG and on the cotangent Lie groupdid G
we consider the canonical symplectic 2-fofbg; = —381g, thenT*G is a symplectic
groupoid overd*G (see[2]).

(i) Let G = M be a symplectic groupoid with exact symplectic 2-fafin= —§60. Then,
sinceR is a Lie group, the product manifol@ x R is a Lie groupoid oveM (see
Examples 2.83). In addition,(G x R = M, n, 0) is a contact groupoid, whergis the
1-formonG x R given byn = n7(0) —n5(5t) andny : G xR — G, m2: G xR — R
are the canonical projections (sg&l]). In particular, ifG = M is an arbitrary Lie



404 D. Iglesias-Ponte, J.C. Marrero/ Journal of Geometry and Physics 48 (2003) 385-425

groupoid with Lie algebroidAG, then we have thatT*G x R = A*G, ng,0) is a
contact groupoidy; being the canonical contact 1-form @G x R. Note that, using
Theorem 3.7we directly deduce this result.

Let G = M be an arbitrary Lie groupoid with Lie algebro®iG ando : G — R
be a multiplicative function. FronProposition 3.4it follows that the contact groupoid
structure orff™*G x R induces a Jacobi structure on the vector budi€. Next, we will
describe such a Jacobi structure. For this purpose, we will recall the definition of the linear
Jacobi structure associated with a Lie algebroid and a 1-cocycle on it (for more details,
seg[16]).

Suppose thatL, [, ], p) is a Lie algebroid oveM and denote byt « the corresponding
linear Poisson structure air* (seeSection 2.2 If wg € I'(L*) is a 1-cocycle ofL, A is
the Liouville vector field ofL* andwy € X(L*) is the vertical lift ofwp, we have that the
pair (ArL*,wg). E(1*,wp)) IS @ Jacobi structure ab*, where

AL+ wg) = ALx + AN a)g, E(1* wp) = —a)g. (3.23)

The Jacobi bracket }(+ ., associated with the Jacobi structUté+ wg), Er* ) iS
characterized by the following conditions:

(X, Y} rwo = [X, Y1, {X, (1% w0 = wo(X) 0 T (3.24)

for X, YeI(L), 7" L* — M being the bundle projection. Here 4fe I'(L), we denote
by Z the corresponding linear function @rf (see[16]).

Theorem 3.10. Let G = M be a Lie groupoid with Lie algebroid AG and: G — R
be a multiplicative function. Ifig : T*G x R — G is the canonical projectiong is
the canonical contact-form onT*G x R and (Ag, Eo) is the Jacobi structure od*G
induced by the contact groupo{@™G x R = A*G, ng, o = 0 o 1), then

Ao = A(A*G.g0)s Eo = E(A*G.¢0)> (3.25)
wheregg € I'(A*G) is thel-cocycle of the Lie algebroid AG defined by
Po(x)(Xy) = X, (0) forx e MandX, € A,G. (3.26)

Proof. Denote byt : T*G x R — T*G the canonical projection onto the first factor. It is
easy to prove that; is a Jacobi morphism between the contact manit@itic x R, ng)
and the symplectic manifoldl™ G, §2¢). This means that

{fom, gomilrgxr = {f glr*G o m1 (3.27)

for f, g € C*°(T*G, R), {, }r+cxr (respectively{, }r+s) being the Jacobi bracket (respec-
tively, Poisson bracket) associated with the contact 1-figgnfrespectively, the symplectic
2-form £2¢).

Now, suppose thdt }o is the Jacobi bracket associated with the Jacobi stru¢tiyeFp).
From(3.6), it follows that

&f. Blo=e{af, @t roxr (3.28)
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for f, 3 € C®(T*G x R, R). Thus, ifX, Y € I'(AG) andX, Y are the corresponding linear
functions onA*G, then (seg3.15), (3.27) and (3.28)

(X, V}o(@o (wg, 1) = (€%{@*(X) o w1, @* (¥) o w1} r+6xR) (@, V)

= e 7&K, & (V)16 (wy) (3-29)
for (wg, ) € T; G x R. On the other hand, using the result2ih, we have that
(1) (X0 ) = X (). ()P (XSS, ) = Y (h) (3.30)
forh € G andv, € TG, whereX (respectlvely,XQG ) is the Hamiltonian vector

a*(Y)
field of the functiona*(X) (respectlvely *(Y)) with respect to the symplectic structure
2. Therefore,ﬁXgG rG = EXQG A¢ = 0 and from(3.29) and (3.3Q)we conclude

a* (%) a* ()

that
(X, Vo(ao(wg, 1) = € @i (wo) [ X0

= do(wg, N[IX, Y]((9))),
[, ] being the Lie bracket oAG. Consequently:

i Xepl @) = € "o (X 7T (e)

(X, 7)o =[x, 7]. (3.31)
Next, we will show that
{X, Lo = ¢o(X) o Ta%G. (3.32)

wheretg+¢ : A*G — M isthe bundle projection. Usin@.15), (3.27) and (3.28it follows
that

(X, 1o(@s (wg. 1)) = (€ (& (X) 0 71, €70 0 M1} 7+gxR) (@g. V)
=e 7OG*(X), €% )14 (wg)
= (1) (X529, (0))(0).
Thus, from(3.26) and (3.3Q)we obtain that
(X, Lo(@o (g, ) = ($0(X) 0 Ta*G) (@o (g, V).

This implies tha{(3.32)holds.
Finally, using(3.31) and (3.32)we deducg3.25) O

a*(X)

4. Jacaobi groupoids
4.1. Jacobi groupoids: definition and examples

Motivated by the results obtained $ection 3about contact groupoids, we introduce the
following definition.
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Definition 4.1. Let G = M be a Lie groupoid(A, E) be a Jacobi structure ofi and
o . G — R be a multiplicative function. ThenG = M, A, E, o) is a Jacobi groupoid if
the homomorphism k) : TG x R — TG x R given by

#A,E) (g, V) = H#alwg) + VEg, —we(Ey))

is a morphism of Lie groupoids over some map. A*G — TM x R, where the structural
functions of the Lie groupoid structure affG x R = A*G (respectively, TG x R =
TM x R) are given by(3.15)(respectively(3.8)).

Remark 4.2. Since #4.g) : TG x R — TG x R is a morphism of Lie groupoids, we
deduce that

90 = (@) 0#a.5) 0 & = (BN 0 #(a.E) 0 &.
Thus, ifw, € A%G, it follows that

9o(wy) = (@ (#Ha(E(@))), —x(EF) — €X(BXED))))). (4.1)

Example4.3.

1. Poisson groupoids
If (G = M, A, E,o)is aJacobi groupoid witlk = 0 ando = 0, then we recover
the definition of a Poisson groupoid (9§86,31]andRemark 3.8.
2. Contact groupoids
Let (G = M, n, o) be a contact groupoid. (fA, E) is the Jacobi structure associated
with the contact 1-fornm then, using the results iSection 3 we have thatG =
M, A, E, o) is a Jacobi groupoid.
3. Jacobi-Lie groups
In [18], we proved that generalized Lie bialgebras (i.e. generalized Lie bialgebroids
over a single point) may be considered as the infinitesimal invariants of a particular class
of Lie groups. These Lie groups can be defined as followsd.be a Lie group with
identity element, o : G — R be a multiplicative function andA, E) be a Jacobi
structure orG such that:

(i) Aiso-multiplicative,i.e.A(gh) = (R)$(A(g))+e @ (L) (Ah))forg, h € G.
(i) E is aright-invariant vector fieldE(e) = —Xp.
(iii) #,(50) = Xo—€° Xo.

Condition (i) implies thatA(e) = 0 and conditions (ii) and (iii) imply thaE (o) = 0.
Thus, using again (ii) and (iii), we deduce that

(@)oo #a,E) = 900 &q, (BNo o #a.E) = 900 Bo-
In addition, from conditions (ii) and (iii), we have that
(L)L Ey = € (Egh+ (R (#4(80),)) (4.2)

forg,h € G.
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Now, suppose thaw,, y) € Ty G x R and(v;, §) € TG x R satisfy the condition
&o (g, ¥) = Bo (v, ©). Then

&(wg + £ €@ (80)) — BEE ). (4.3)

Thus, using2.12), (3.8) and (4.2and the fact thakE is a right-invariant vector field, we
deduce that

#a,B)(0g, V) ®TGxR #(A,E) (Wi, ©)
= (L) (#a(0n) + (Rp)H#a(0g + €78 (50),))
+ (y + €©0) Egn, —wg(Ey)).

On the other handigh = E, ®71c 0, and therefore, fronf2.14) and (3.15)it follows
that

#A,E) (g, ¥) ®1+6xR (Vhs )
= Gtal(Ry- D) (g + £ €@ (80)p) + (L, )TN (€ vy)
+ (v + €O Egn, —w, (Ey)).

Consequently, usin@.13) and (4.3and the fact thatt is o-multiplicative, we conclude
that

#A,E)(0g, V) ©TxR #(A,E)(Vi, ) = #a,E)(0g, V) ®T+GxR Vi, O).

Thus, we have proved thét = M, A, E, o) is a Jacobi groupoid.
. An abelian Jacobi groupoid

Let(L,[,]. p) beaLiealgebroid ovevf andA .+ be the corresponding linear Poisson
structure on the dual bundie* (seeSection 2.2. We may consider oh* the Lie groupoid
structure for whiclx = 8 is the vector bundle projection and the partial multiplication is
the addition in the fibers. The#h,* with the Poisson structuré; « is a Poisson groupoid
(see[40]).

Now, suppose thatg € I'(L*) is a 1-cocycle of. and denote bYA 1+ wy), E(L*,wg))
the Jacobi structure oh* given by(3.23) Note that: (i) The Liouville vector field\
of L* and the vertical liftoy € X(L*) of wp to L* area-vertical andg-vertical vector
fields onL*, and (i) wg is a right-invariant and left-invariant vector field drf. Using
(), (ii), (2.11) (3.8),(3.15) (3.23)and the fact thatL*, A +) is a Poisson groupoid, we
deduce thatL* = M, A1+ wg), E(L*,wp). 0) iS @ Jacobi groupoid.
. The banal Jacobi groupoid

Let M be a differentiable manifold. The resultsSection 2.3seeExample 2.8imply
thatG = M x R x M is a Lie groupoid oveM and, moreover, the functian: G — R
given byo(x, t, y) = t is multiplicative. Thus, we can consider the corresponding Lie
groupoidsTG x R = TM x R and7T*G x R = A*G.

On the other hand, the map: TM x R — AG given by

3
D(Xy, M) = (o, )\W, Xx) € TonG for (X,1) € TM x R (4.4)
0
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defines an isomorphism between the Lie algebréidd x R, [, ], 7) (seeSection 2.2
andAG. Thus,AG may be identified withTM x R and, under this identification, the
projections and the partial multiplications @& x R and7*G x R are given by

(@o ((X o Yy) ,x> = (Yy,a+2),
ot|y
e (e g 1) ¥) = K,
<<Xx ai Y> k) DTGxR ((Y a/i Y’,) a+x>
o ) ) oy )
= <<Xx, (a~|—a’)i, Y’,,) ,A) ,
otyyr

& ((wy, adtly, 6y), y) = (€76y, ),

Bo (@, d'8tl0,0,), 7)) = (—wly,d' =¥,

(wx, adtly, Oy), y) ®r+GxRr (—€7'0y,d'8tly,6,),d —e'a)
= (wx, d €8tl140, €6)), y —a+€d).

Now, suppose thatA, E) is a Jacobi structure oM. Then, it was proved ifiL5] that
the pair(A’, E') is a Jacobi structure ofl, where

/ _ _8 — 9
A(x, t,y) = (A(X) ol A E(X)) +€ <A()’) + o, A E(y)) ,
E'(x,t,y) = —E(x). (4.5)

Furthermore, it is easy to prove that the mgp A*G = T*M x R — TM x R given
by (4.1) is just the homomorphismi#, g : T*M x R — TM x R. Using the above
facts, we conclude thdaG = M, A’, E’, o) is a Jacobi groupoid.

4.2. Some basic properties of Jacobi groupoids
In this section, we will show some basic properties of Jacobi groupoids.

Proposition 4.4. Let(G = M, A, E, o) be a Jacobi groupoid. Then

(i) M = (M) is a coisotropic submanifold in G
(i) Eisaright-invariant vector field on G anl(c) = 0. Moreover if Xg € I'(AG) is the
section of the Lie algebroid AG of G satisfyifig= —70, we have that

#,4(80) = Xo—€°Xo. (4.6)

(iii) If &, B and¢ are the projections and the inclusion of the Lie group®itc = A*G,
then

e_U#AoEo&zeTootTo#A, #AOEO,B:GTO,BTO#A.
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(iv) If g and h are elements of G such thatg) = B(h) = x and X and Y are (local)
bisections through the points g andXi(x) = g and)(x) = k, then

Agh) = (Ry$(A() + e 7Ly (AMR) — @ (Lyo Ry (AR)).
4.7)

Proof. If x is a point ofM then, using2.13) we obtain that the map
g|AT-G . AiG — T;G

is a linear isomorphism between the vector spa¢e§ and the annihilator of the sub-
spaci;e(M), i.e. (Tze(M))°. Thus, from(2.10), (2.13), (3.8), (3.15) and (4.&nd since
(€No0opo = #A,E) 0 €, it follows thatM = (M) is a coisotropic submanifold iG with
respect taA. This proves (i).

On the other hand, usin@.10), (2.13), (3.8), (3.15) and (4.4hd the relations:

(@Ns o #A.E) = 900 o, (BNs 0 #a.E)y = 900 Bo,

we deduce (ii) and (iii).
Finally, we will prove (iv). Using the multiplicative functioa, one may introduce the

Lie groupoid structure im*G over A*G with structural functionsy, g%, ®7., ande;
and’ given by

@k (wg) = €7@ &(wy), Bi(vp) = B(wy) for w, e T;G and vy, € T;G,
(Wg ®F+ V1) = wg B+ (€ Fvp), Ey(wy) = E(wy) for w, € AYG,
T (wg) = € "®i(w,) for wy € TFG. (4.8)

In fact, if we consider orT*G x R the Lie groupoid structure ovet*G introduced in
Section 3then the canonical inclusion

TG — T*G x R, wgeT;GH(wg,O)eT;GxR

is a Lie groupoid monomorphism over the identityAfG.
Since the map# k) : TG x R — TG x R is a Lie groupoid homomorphism, we have
that (se€3.8), (3.15) and (4.9)

Ha(wg ®1+G Vi) = #a(wg) D16 #a (€79 1))

for wy € Tg*G andv, € T;G satisfyinga(wg) = B(vy). Thus, if IT is the 2-vector on
G x G x G defined bylI(g, i, k) = €® A(g) + A(h) — €® A(k), it follows that the
graph of the multiplication irG, {(g, h,gh) € G x G x G/a(g) = B(h)}, is a coisotropic
submanifold ofG x G x G with respect td7.

Now, denote by the affinoid diagram corresponding to the Lie groupGidi.e. see
[41]:

2={k,g,h,r) €GxGxGxGJah) =a(k), Bk) = B(g),r = hk_lg}.
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Then, following the proof of Theorem 4.5 [A41], we obtain that2 is a coisotropic sub-
manifold of G x G x G x G with respect to the 2-vectdl given by

(k. g.h.r) = P AK) — O AR) — @A) + D AW

On the other hand, §§ andh are elements of; satisfyinga(g) = B(h) = x, we have that
(gh, g, h, %) is an element of2. In addition for any¢ € 73,G and X, Y (local) bisections
of G through the pointg andi(X(x) = g and)Y(x) = h), it follows from Lemma 2.6 in
[42] that

(=& (RY)D*®), (L)D* &), —((Ry o Lx)})*(€)

is a conormal vector te at(gh, g, &, %), i.e. itis an element ofT(gn , 1 7)$2)°. Therefore,
if&ne Tg*hG we deduce that

€ Agh) — D (L) (Ah)) — O (Ry)$(A(g))
+&™ (Ry o Ly)X(A®)) (& 1) = 0.

This implies tha{4.7) holds. O
Motivated by the above result, we introduce the following definition.

Definition 4.5. LetG = M be a Lie groupoid and : G — R be a multiplicative function.
A multivector field P on G is o-affine if for anyg, h € G such thaw(g) = B(h) = x and
any (local) bisectiong, ) through the pointg, &, X(x) = g and)(x) = h, we have

Pgh) = (RYS(P()) + e (LYt (P(h) — e 7® (Ly o Ry)I(P(X)). (4.9)

Itis clear that ifP is ac-affine multivector and identically vanishes, thef is affine (see
[31,42). On the other hand, if7 is a Lie group with identity elementand P is ac-affine
multivector field onG such thatP(e) = 0, thenP is ac-multiplicative multivector field in
the sense dflL8].

The following proposition gives a very useful characterizatiow @fffine multivector
fields (sed18] for the corresponding result for the case of Lie groups).

Proposition 4.6. Let G = M be ana-connected Lie groupoid and : G — R be a
multiplicative function on G. For a multivector field P on the following statements are
equivalent

(i) Piso-affing
(ii) for any left-invariant vector field¥ , the Lie derivativee” L« P is left-invariant

Proof. The result follows using the fact thatis multiplicative and proceeding as in the
proof of Theorem 2.2 ifi31]. O
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5. Jacobi groupoids and generalized Lie bialgebroids

The aim of this section is to show the relation between Jacobi groupoids and generalized
Lie bialgebroids.

5.1. Coisotropic submanifolds of a Jacobi manifold, Lie algebroids and 1-cocycles

In this section, we will prove that if is a coisotropic submanifold of a Jacobi manifold
M, then there exists a Lie algebroid structure on the conormal bundland, in addition,
we can define a distinguished 1-cocycle for this Lie algebroid structure. For this purpose,
we will need the following result.

Lemmab.1. Let(M, A, E) be a Jacobi manifold and[, ] (4.£). #m,E)) be the Lie alge-
broid structure onT*M x R. Suppose that S is a coisotropic submanifold of M and that
7 2N M) x C®°(M,R) — 21(S) x C*®(S, R) is the map defined by (w, f) = (*

w, J* ), j: S — M being the canonical inclusiohen

() Kerj*is a Lie subalgebra of the Lie algebt& (M) x C>® (M, R), [.1a.m)-
(i) Thesubspace 621(M)x C>® (M, R) defined by(w, f) € 21(M)xC>®(M,R)/w|s =
0, j* f =0} is anideal in Kep*.
Proof.
() If (w, ), (v, &) € 2Y(M) x C®(M, R) satisfy
7 (@, f)=0, 7,8 =0,
it follows from (2.5) that
T, ), v, 915 =" (#a(@)dv — i#Ha(v)dw — S(w#Ha (1)),
T (@#HA () +#a(@)(g) —#a(W) (). (5.1)

Now, since;* w = 0, j* v = 0 andS is a coisotropic submanifold, it follows that the
restriction toS of the vector fields #(w) and # (v) is tangent taS. Thus, from(5.1),
we deduce that

7l(, f), v, 9l.5 =0.
(i) If o andV are 1-form onM, we will denote by ', '] 4 the 1-form onM given by

[0, V]a = i#a(@))8V —i#a(V)d0" — 8(0/ #a())).

Note that

[« V14 = fl&' V14 +#a(@)(f)V for feC®(M,R). (5.2)
Next, suppose thatw, f), (v, g) € 2LM) x C®(M, R) satisfy the following condi-
tions:

CL)|S = O’ J* f = Os j*(‘]7 g) =0.
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Then, proceeding as in the proof of (i), we have that

|[(w’ f)v (U’ g)]I(A,E)\S = (I[CL), l)]I/\|57 O)

Thus, ifx is a point ofS, we must prove thatdp, v] 4 (x) = 0. For this purpose, we con-
sider a coordinate neighborhoot, ¢) of M with coordinategxy, ..., x,, x,+1, .. .,
X;) such that

eUNS) ={(x1,...,xm) € p(U)/xp41="-=xn = O}
Here,n (respectivelym) is the dimension of (respectivelyM). Then, onU
m ) n . m
w:Za)’Sxi, V= vaéxj+ Z 8y (5.3)
i=1 j=1 k=n+1
with
]* a)i =0, ]* vj =0 (54)

foralli e {1,...,m}andje {1,...,n}.
Note that, since is a coisotropic submanifold df, it follows that

#400x)|s(@) =0 forallie{l,...,m} and kef{n+1,...,m}. (5.5)
Therefore, using5.2)—(5.5) we conclude thatd, v] 4 (x) = 0. O
Now, we will show the main result of the section.
Proposition 5.2. Let (M, A, E) be a Jacobi manifold and[, ] 4.k), #(A,E)) be the Lie
algebroid structure oiT*M x R. Suppose thaf is a coisotropic submanifold of M. Then

(i) The conormal bundle to,V(S) = (TS° — S, admits a Lie algebroid structure
(I.1s, ps) defined by

[w,v]s() = (Tl (@, 0), @, 0] (4,£) (), ps(w)(x) = #4(wx) (5.6)

for all x € S, whererr1 : 21 (M) x C*®°(M,R) — £21(M) is the projection onto the
first factor and@ and v are arbitrary extensions to M @ andv, respectively
(i) The sectiorEg of the vector bundl&v(S)* — S characterized by

w(Es(x)) = —w(E(x)) (5.7)
forallw € N, S = (T, S)°andx € S,isal-cocycle ofthe Lie algebroidv(sS), [, 1s, 0s)-

Proof. (i) follows from Lemma 5.1and (ii) follows using(5.7) and the fact that—E, 0) €
X(M) x C*°(M,R) is a 1-cocycle of the Lie algebroid™M x R, [,1¢a.£). #4.£). O

Remark 5.3. If the Jacobi manifoldV is Poisson (i.eE = 0), then the 1-cocyclé&
identically vanishes and, ] s, ps) is just the Lie algebroid structure obtained by Weinstein
in [40].
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5.2. The generalized Lie bialgebroid of a Jacobi groupoid

In this section, we will show that generalized Lie bialgebroids are the infinitesimal in-
variants for Jacobi groupoids.

Let(G = M, A, E, o) be aJacobi groupoid akG be the Lie algebroid of;. Then,E is
aright-invariant vector field and, thus, there exists a sectigof AG such thatt = —70
(seeProposition 4.3 Moreover, the conormal bundle 3, as a submanifold aff, may be
identified withA*G.

Now, we consider the sectiaty of A*G given by

o(Xy) = X (0) for X, € A,G and xe M. (5.8)

Sinceo is a Lie groupoid 1-cocycle, it follows thal is a 1-cocycle of the Lie algebroid
AG (se€[42]).

On the other hand, using that = (M) is a coisotropic submanifold a¥, we deduce
that there exists a Lie algebroid structufe] ., o«) on A*G and, furthermore, the vector
field E induces a 1-cocyclé&y € I'(AG) of A*G (seeProposition 5.2 In fact, from
Proposition 5.2we have tha¥y; = Xg and

[ v].(x) = 11[E 0 @, 0), G o w, 0] (4.5 ().
s (@) (X) = &l (#a (E(wyx))) (5.9)

for w, v € I'(A*G) andx € M, where¢ is the inclusion in the Lie groupoi@d*G = A*G
andé o w andv o w are arbitrary extensions 16 of € o w andé¢ o v, respectively.
Note that, from(4.1) and (5.9)we have thapg = (p«, Xo), Where
(0%, X0)(@x) = (px(@x), wx(Xo(x))) (5.10)

for w, € AZG. In addition, we will prove the following result.

Theorem 5.4. Let(G = M, A, E, o) be a Jacobi groupoid. TheffAG, ¢p), (A*G, Xp))
is a generalized Lie bialgebroid

Proof. Denote by dy, the Xg-differential of the Lie algebroidA*G, [, ], p«). We will
show that

L A =—0ix X (5.11)

—_~—

for X € I'(AG). Suppose thabi, w, are any sections of*G. Let€ o w1, € o w2 be any of
their extensions to 1-forms a@. Then, using2.3), (2.5), (2.15) and (5.9nd the fact that
olecny = 0, we have that

(&7 Lg Nlem (w1, @2)

= ((ﬁ#A(ﬁ)é/Jz _ ﬁ#A(%)é/g/m — AGow o)) (X)
4 (E 0 2) @ 0 w1(X)) — #4(E 0 w1) (€ 0 02(X)))lecany
= [w1, w2] +(X) + ps(w2) (@1(X)) — ps(w1)(w2(X)) — (Xo A X) (w1, w2)

= —(tixo X) (01, w2).
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Thus, sinc&é*xox and € L A are left-invariant 2-vectors (s&¥oposition 4.pand their
evaluation coincides on the conormal bundf&G, we deducé5.11)
Using(2.8), (5.8) and (5.11)wve obtain that

Gxo[ X Y] = —€" Ly 74 = Ly (€ Lg A) = T (0)(€ L A)
— Lo @ Lg )+ X (0)(€ L A)
= |[Xa d*XOY]I - (Z’O(X)d*XoY - I[Ya d*XOX]I + @O(Y)d*XoX (5-12)

for X, Y € I'(AG), where([, 1, p) is the Lie algebroid structure o&G. Thus, from(2.16)
and (5.12)we conclude that

dexol X, Y] = [X, dixo Y10 — [ V. dixo X1 4o

for X, Y € I(AG).
Now, (5.8), the conditionE (o) = —70(0) = 0 (seeProposition 4.%and the fact that
is a multiplicative function imply thado(Xo) o @« = 0 and, therefore:

$o(Xo) = 0. (5.13)
Furthermore, ift € M then, from(4.6), (5.8) and (5.9we deduce that

€50+ (¢0) (1) = #4(B0)(X) = X o(X) — X o(F) = —€X (&} (X0(x))),
i.e.sedq?2.7).

Px(90)(x) = —p(Xo)(x). (5.14)
On the other hand, usin®.8), (5.11) and (5.13)t follows that

e 7i(30)(0,X) = —i(50) (L5 A) + € ($o(X) 0 @) X 0.
Consequently, using agafh.8), we have that

i(¢0)(di X) = —i((80) (L A)) 0 € + Po(X) Xo. (5.15)
Finally, from (4.6) and (5.8)we deduce that

0=[X. X ] =i0)(LgA) +#a(B(bo(X) 0 )

— €% (¢o(X) 00) X o+ & [X, Xol,

which implies that (se€.3), (5.8), (5.9) and (5.1p)

i(¢0) (A« X) + di(¢o(X)) + [ Xo, X] = 0. O

Next, we will describe the generalized Lie bialgebroids associated with some examples
of Jacobi groupoids. We remark that two generalized Lie bialgeb(oilspo), (A*, Xo))

and ((B, wo), (B*, Yp)) over a manifoldM are isomorphic if there exists a Lie algebroid
isomorphismZ : A — B such thatZ(Xp) = Yp and, in addition, the adjoint operator

T" : B* — A*is also a Lie algebroid isomorphism satisfyifitywo) = ¢o.
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Example5.5.

1. Poisson groupoids

If (G, A, E, o) is a Jacobi groupoid witlk = 0 ando = 0, i.e.(G, A) is a Poisson
groupoid, then we have that and X identically vanish (se€5.8) andRemark 5.3.
Therefore (2.18)andTheorem 5.4mply a well-known result (se80]): if (G, A) is a
Poisson groupoid, then the p&aikG, A*G) is a Lie bialgebroid.

2. Contact groupoids

Let(G = M, n, o) beacontactgroupoid ard , E) be the Jacobi structure associated
with the contact 1-formy. Then,(G = M, A, E, o) is a Jacobi groupoid.

Now, denote by Ag, Eo) the Jacobi structure oM characterized by the conditions
(3.6), by Xg the section of the Lie algebroidlG of G satisfyingE = —70 and by
Z:T*M x R — AGthe Lie algebroid isomorphism given 1§8.7). If we consider the
section(0, —1) € 21(M) x C*°(M, R) of the vector bundl§*M x R — M, we have
that (sed3.7))

7(0, —1) = Xo. (5.16)

Moreover, ifT* : A*G — TM x R is the adjoint operator df, from (3.7), it follows
that

T (v) = (e (#a(E (1)), —vx(Xo(x)) (5.17)

for v, € AXG, where€ is the inclusion in the Lie groupoidd*G = A*G.
Next, denote by[, ], 7_) the Lie algebroid structure on the vector buntiMx R —
M defined by

(X, ), X, 9] = (-[X, Y], =(X(9) = Y()), 7n-(X,[)=-X

for (X, f) € X(M) x C*°(M, R).

On the other hand, if on the vector bundl& x R — G we consider the natural Lie
algebroid structure (se®ection 2.2, then the map# g : 7°G x R - TGx Risa
Lie algebroid homomorphism between the Lie algebréi®sG x R, [, 1(4.£). #(A,E))
and TG x R. Using this fact,(5.9) and sinceM = (M) is a coisotropic submani-
fold of G, we deduce that* defines an isomorphism between the Lie algebraiti
and(TM x R, [,]—, 7—). In addition, from(5.17) and Proposition 3.3we obtain that
T*(¢0) = (—Eo, 0).

In conclusion, if on the vector bundiE* M x R — M (respectively]TM x R — M)
we consider the Lie algebroid structufe ] (4. £,) #(AO,EO)) (respectively([,]-, 7)),
thenthe generalized Lie bialgebroid8G, ¢o), (A*G, Xo)) and((T*M xR, (— Eg, 0)),
(TM x R, (0, —1))) are isomorphic. Note that the Jacobi structurésbinduced by the
generalized Lie bialgebroid7*M x R, (—Ep, 0)), (TMx R, (0, —1))) isjust(Ag, Eo)
(see(2.20).

3. Jacobi-Lie groups

Let G be a Lie group with identity element o : G — R be a multiplicative

function and(A, E) be a Jacobi structure af such thatA is o-multiplicative, E is a
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right-invariant vector field and
#4(80)(q) = —E; +€ 7@ (L) (E(e)) forall g eG.

Then,(G = {e}, A, E, 0) is a Jacobi groupoid (séexample 4.3.

The Lie algebroid of5 is just the Lie algebrg of G, i.e. AG = g and, from(5.8), it
follows thatgg = (80)(e).

On the other hand, sinc&(e) = 0, one may consider the intrinsic derivatiéeA :
g — A2%gof A ate. In fact, using(2.5) and (5.9)we deduce that the Lie bracke{ ] on
the dual spacd*G = g* of g is given by

[@, v]s = [0, v]4 — 0(E())v + v(E(e))w

forw,v e g*, where[]4 : g* x g* — g* is the adjoint map of the intrinsic derivative
of A ate. In addition, the 1-cocycl&p ong* is Xo = —E(e).

Thus, usingTheorem 5.4we conclude that the pai(g, (50)(e)), (g*, —E(e))) is a
generalized Lie bialgebroid ovét}, i.e. a generalized Lie bialgebra. This result was
proved in[18] (see Theorem 3.12 i1 8]).

4. An abelian Jacobi groupoid

Let(L,[,], p) be aLie algebroid over amanifol andwg € I'(L*) be a 1-cocycle of
L. We may consider of* the Jacobi StructureA (.« wy), E(L*,w0) given by(3.23)and
the Lie groupoid structure for whial = g is the vector bundle projection: L* — M
and the partial multiplication is the addition in the fibers. As we know Eseample 4.3,

(L* = M, A(1+,0p), E1*,00), 0) is & Jacobi groupoid and we have the corresponding
generalized Lie bialgebroid A(L*), ¢o = 0), (A*(L*), Xp)).

On the other hand, if 0 M — L* is the zero section af* andu € t=1(x) = L%,
we will denote byu”(0(x)) € To L the vertical lift of . to L* at the point @x). Then,
the map

v:L* —> A(LY), ne Ly u’0x) € Ag(LY)

defines an isomorphism between the vector bundfesand A(L*). Moreover, using
(3.23)and sincax = 7 and the Lie bracket of two left-invariant vector fields b
is zero, we conclude that: (i) defines an isomorphism between the Lie algebigid
(with the trivial Lie algebroid structure) and(L*) and (ii) v(wg) = Xo. In addition,
if v* : A*(L*) — L is the adjoint map ob : L* — A(L*) then, from(2.5), (2.6),
(3.23) and (5.9)we deduce that* induces an isomorphism between the Lie algebroids
A*(L*) and(L, [, 1. p).

Therefore, we have proved thatthe generalized Lie bialgebgoid4.*), 0), (A*(L*),
Xo)) and((L*, 0), (L, wp)), are isomorphic.

5. The banal Jacobi groupoid

Let (M, A, E) be a Jacobi manifold an@d the product manifoldZ x R x M. Denote
by (A’, E) the Jacobi structure o@ given by(4.5)and byo : G — R the function
defined byo(x, 7, y) = . Then, one may consider a Lie groupoid structur&iaver M
in such a way thatG = M, A’, E’, o) is a Jacobi groupoid (seexample 4.3. Thus,
we have the corresponding generalized Lie bialgebtodb, ¢o), (A*G, Xo)). As we
know, the map® : TM x R — AG given by (4.4) defines an isomorphism between
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the Lie algebroid$sTM x R, [, ], #) andAG and, moreover, it follows thab(—E, 0) =
Xo.

Now, let®* : A*G — T*M x R be the adjoint map o®. Then, using2.5), (4.4),
(4.5) and (5.8)we deduce thab* induces an isomorphism between the Lie algebroids
A*G and(T*M x R, [,1(a.5), #.£) and, in addition®*(¢o) = (0, 1).

Therefore, we have proved thatthe generalized Lie bialgeb¢odds ¢o), (A*G, Xp))
and((TM x R, (0, 1)), (T*M x R, (—E, 0))) are isomorphic.

To finish this section, we will relate the Jacobi structureand the Jacobi structure
on M induced by the generalized Lie bialgebroid structur&leforem 5.4

Proposition 5.6. Let(G = M, A, E, o) be a Jacobi groupoid antAg, Eg) be the Jacobi
structure on M induced by the generalized Lie bialgebr@i8iG, ¢o), (A*G, Xp)). Then

the projectiong is a Jacobi antimorphism between the Jacobi manif@ldsA, E) and

(M, Ag, Ep) and the pair(a, €°) is a conformal Jacobi morphism

Proof. Denote by{, } (respectively, }o) the Jacobi bracket associated with the Jacobi
structure(A, E) (respectively(Ag, Eg)). Then, we must prove that

{B" f1, B f2} = —=B*{ f1. f2}o. e (e a” f1, €7a" f2} = o {f1. f2}o

for f1, fo € C*°(M, R).

Now, if (px, Xo) : T(A*G) — X(M) x C*°(M, R) is the map given by5.10) and
(p, o) : T(AG) — X(M) x C*°(M,R) is the homomorphism of*° (M, R)-modules
defined by

(P, $0)(X) = (p(X), ¢o(X)) (5.18)
then, from(2.20), (5.10) and (5.18]t follows that

#(A0,E0) = (P, X0) © (p, p0)™, (5.19)
where(p, ¢0)* : 2Y(M) x C®°(M, R) — I'(A*G) is the adjoint operator of the homomor-

phism(p, ¢o). y
Using(3.8)and sinceB"), o #.r) = (p«, Xo) o Bs, We have that

{B* f1. B* f2} = (#a.£)(B*8f1, B f1). (B*8f2, B* f2))
= (((,B)I o#a,E)) (B 8f1, B f1), Bf20 B, B f2))
(((px, X0) © Bo) (B*8f1. B* f1). (8f2 0 B, B* f2)).

From(2.7), (2.13), (3.15), (5.8) and (5.18)e deduce thal, ((85)*(wp(g), ») = —(p, $p0)*
(wp(g), M) TOr (wg(g), 1) € T/;‘(g)M x R. Using this fact and5.19) we get that

{B" f1. B* f2} = B{ f1, f2lm.
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On the other hand, usir(@.7), (2.20) and (3.8Proposition 4.4nd sincea" ), o #4. k) =
(o4, Xo) o @y, We obtain that

e {e’a" f1, € a" fo} =€ (#a b (8(€7 " f1), € f1), (8(€7a" f2), € " f2))
=& (@)oo #a,0) (@ 8f1,@* f1), Bf2 0, &* f2))
+ €7 (& f1) (#a,£)(80, 0), (" (8f2), @™ f2))
=€ (((p«, X0) © @) (" (8f1), &* f1), (Bf2 0 @, @™ f2))
+ a*(f1Eo(f2)).

Now, from(2.7), (2.13), (3.15), (5.8) and (5.18)follows that €® . ((of)* (wa(g)), A) =
(0, $0)* (Wa(g), 0) fOr (wy (), A) € T;(g)M x R. Therefore

e (€a" f1, €a” o} = a*{ f1, falo. O
5.3. Integration of generalized Lie bialgebroids

In this section, we will show a converse Dieorem 5.4i.e. we will show that one may
integrate a generalized Lie bialgebroid and obtain a Jacobi groupoid.

5.3.1. Jacobi groupoids and Poisson groupoids
In this first subsection, we will prove that a Poisson groupoid can be obtained from any
Jacobi groupoid and we will show the relation between the generalized Lie bialgebroid as-
sociated with the Jacobi groupoid and the Lie bialgebroid induced by the Poisson groupoid.
LetG = M be a Lie groupoid and : G — R be a multiplicative function. Then, using
the multiplicative character af, we can define a right action 6¢f = M on the canonical
projectionzty : M x R — M as follows:

(x,1) - g = (a(g), 0(g) + 1) (5.20)

for (x,f) € M x Randg € G such thapB(g) = x. Thus, we have the corresponding action
groupoid(M x R) *x G = M x R. Moreover, if(AG, [, ], p) is the Lie algebroid of7, the
multiplicative functiono induces a 1-cocycleég on AG given by (se€5.8))

Po(x)(Xy) = X,(0) for xe M and X, € A,G. (5.21)

In addition, using the results iBection 2.3(see(2.9)), we deduce that thR-linear map
x . I(AG) - X(M x R) defined by

d
X* = (p(X) om1) + (do(X) o T o (5.22)

induces an action oAG on the projectionr; : M x R — M and the Lie algebroid of
(M x R) % G is just the action Lie algebroidG x 1.

Now, it is easy to prove thatM x R) x G may be identified with the product mani-
fold G x R and, under this identification, the structural functions of the Lie groupoid are
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given by

o5 (8, 1) = (a(g),0(g) +1 for (g, € G xR,

Bo(h,s) = (B(h),s) for (h,s) e G xR,

mg((g, 1), (h,5)) = (@hn) if ag(g, 1) =PBs(h,s),

e (x, 1) = (e(x), 1) for (x,1) e M xR,

to(g, 1) = (t(g),0(g) +1 for (g,0) € G x R. (5.23)

Thus, if A(G x R) is the Lie algebroid oG x R andX € A (G x R), it is clear that
X € A,G and therefore the map

J:A(G xR) - AG x R,
XeAun(GxR)— JX)=(X,1) e A,G xR (5.24)

defines an isomorphism of vector bundles. Furthermore, A@rx R we consider the Lie
algebroid structure], ]%°, p%0) given by(2.22) thenJis a Lie algebroid isomorphism.
In conclusion, the Lie algebroid of the Lie groupd@iix R = M x R may be identified
with (AG x R, [, ]7%°, p%).

We also have the following result.

Proposition 5.7. Let G = M be a Lie groupoid andr : G — R be a multiplicative
function. Suppose that, E) is a Jacobi structure on @hat A = e /(A + (3/91) A E)

is the Poissonization o6& x R and that inG x R we consider the Lie groupoid structure
on M x R with structural functions given b{b.23) Then (G = M, A, E, o) is a Jacobi
groupoid if and only ifG x R = M x R, A) is a Poisson groupoid

Proof. From(2.10) and (5.23)it follows that the projectionga,)", (B5)", the inclusion
(¢5) T and the partial multiplicatio® g xR, of the tangent groupoif G x M) = T(M xR)
are given by

T d T
(ag) (Xg—i-)»—) =a (Xg) + (A + X,(0))

8t|t at|t-|-‘:7(g)

d
for (Xg +)\-M> € T(g,t)(G x R),
t

d d d
(Bo)T (Yh +u ) = BT(Yy) +pu— for <Yh +M—) € Tih,9(G x R),

otls otls ot|s

9 0 0
X+ 21— Yi4+u—|=X Y+ —,
< g 3t|r) DG xR) ( h ,ual'S) g DTG Yh arl,

0 0 0

T T

X A— ) = X r— for [ X A— T M x R).

(eo) ( xt 8l‘|[> € (Xy)+ o), ( x+ 8t|,> € Tien(M x R)
(5.25)
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On the other hand, using?.13) and (5.23)we deduce that the projectiods, B,, the
inclusioné, and the partial multiplicatio® 7+ «r) in the cotangent groupoi@*(G x
R) = A*G x R are defined by

G (wg + V811:) = (@(wg). 0(8) + 1) Tor (wy + yitl) € TY, (G x R),

Bo(vn + &8115) = (B(vp) — £(80) g0 s) for (vp + &8tls) € T, ) (G x R,
(wg + ¥t]s) @+ xR) (W + L6t]5) = (wg + £(80)g) B1+G Vi + (¥ + O)dts,
€o(wy, 1) = E(wy) + 08t for (wy, 1) € ATG x R. (5.26)

Moreover, from(2.2), we have that the homomorphism # T*(G x R) — T(G x R) is
given by

_ b
#5 (wg + Yot|;) = € ! (#A(a)g) +vE, — a)g(Eg)§|,> (5.27)

for (wg + y8tl1) € T(, (G x R).
Now, we consider if*G x R (respectively,TG x R) the Lie groupoid structure over
A*G (respectivelyT M x R) with structural functions defined {8.15)(respectively(3.8)).
Then, a straightforward computation, usif®10), (2.13), (3.8), (3.10), (3.15), (5.25)-
(5.27) shows that ¢ ) : TG x R — TG x R is a Lie groupoid morphism over some
mapgp : A*G — TM x Rifand only if #; : T*(G x R) — T(G x R) is a Lie groupoid
morphism over some map : A*G x R — T(M x R). This proves the result. O

As we know (seeSection 2.4 if ((A, ¢o), (A*, X)) is a generalized Lie bialgebroid
and on the vector bundld x M — M x R (respectively,A* x R — M x R) we
consider the Lie algebroid structu¢p, ] #°, p%0) (respectively,[, ]IQX", ,?)fo)), then the
pair (A x R, A* x R) is a Lie bialgebroid. In particular, §G = M, A, E, o) is a Jacobi
groupoid andAG is the Lie algebroid of, then the paifAG x R, A*G x R) is a Lie
bialgebroid. Furthermore, we have the following proposition.

Proposition 5.8. Let(G = M, A, E, o) be a Jacobi groupoid antG x R = M x R, A)

be the corresponding Poisson groupoid((AG, ¢o), (A*G, Xo)) (respectively (A(G x

R), A*(G x R))) is the generalized Lie bialgebroiffespectively the Lie bialgebroidl

associated wWithG = M, A, E, o) (respectively(G x R == M x R, A)), then the Lie
bialgebroids(A(G x R), A*(G x R)) and(AG x R, A*G x R) are isomorphic

Proof. Denote by([, ], p) the Lie algebroid structure oAG and by 7 : A(G x R) —
AG x R the isomorphism between the Lie algebraidss x R) and(AG x R, [, ] 7%, p%0)
given by(5.24)

Now, let7 : TG x R x R — T*(G x R) be the map defined by

T (g, y, 1) = wg + 1], for o, € T;G and y,t € R.



D. Iglesias-Ponte, J.C. Marrero/ Journal of Geometry and Physics 48 (2003) 385-425 421
Using the results ifil7] (see Section 3.2 if7]), we deduce that
~ -~ ~ X, ~ -~ ~ ~ - ~ ~ -
TG H. BV ws =17 @ H.T B2 ; =la+ for, B+gsl ;.

% - = Xo -
#1(J (@, ) =#ap @ f) (5.28)

for &, Btime-dependent 1-forms aiiandf, g € C*°(G xR, R), where([, ] (4.£), #4.£)
(respectively([, ] 7. #;)) is the Lie algebroid structure df*G x R (respectively]™* (G x
R)) induced by the Jacobi structu¢el, E) (respectively, the Poisson structuid on G
(respectivelyG x R).

Onthe other hand, if we identif§* G (respectivelyd* (G x R)) with the conormal bundle
of e(M) (respectivelye, (M x R)), then the restriction Qﬁ* tOA*Gx {0} xR=EA*G xR
is just the adjoint operataf* : A*G x R — A*(G x R) of J. Therefore, from(2.23),
(5.9) and (5.28andRemark 5.3we conclude that the map* is an isomorphism between
the Lie algebroid§A*G x R, [,12°°, pX°) andA*(G x R). O

5.3.2. Integration of generalized Lie bialgebroids

In this section, we will show a converse Dfieorem 5.4

For this purpose, we will use the notion of the derivative of an affivector field on a
Lie groupoid (se¢31]). Let G be a Lie groupoid with Lie algebroidG and P be an affine
k-vector field onG. Then, the derivative oP, §P, is the mapsP : I'(AG) — I'(A¥(AG))
defined as follows. IX € I'(AG), § P(X) is the element if (A% (AG)) whose left-translation
is L P.

Now, we will prove the announced result at the beginning of this section.

Theorem 5.9. Let ((AG, ¢o), (A*G, Xo)) be a generalized Lie bialgebroid where AG is
the Lie algebroid of am-connected and-simply connected Lie groupoi@d = M. Then
there is a unique multiplicative functien: G x R and a unique Jacobi structucet, E) on

G that makesG = M, A, E, o) into a Jacobi groupoid with generalized Lie bialgebroid
((AG, ¢0), (A*G, X0)).

Proof. SinceG is a-connected and-simply connected, we deduce that there exists a
unique multiplicative functiorr : G — R such that

¢o(X) = X(0) VX € I(AG).

The multiplicative functiors : G — R allows us to construct a Lie groupoid structure in
G x R overM x R with structural functions,, B, m, €, andi, given by(5.23)

If (I, 1, p) is the Lie algebroid structure oG then, as we know, the Lie algebroid of
G x Ris (AG x R, [,]7%, p®). Moreover, if ([, ]+, ps) is the Lie algebroid structure
on A*G and we consider on the vector bundléG x R — M x R the Lie algebroid
structure([, ]IQXO, ,bf“) given by(2.23) it follows that the paifAG x R, A*G x R) isa Lie
bialgebroid. Therefore, using Theorem 4.134], we obtain that there is a unique Poisson
structureA on G x R that makesG x R into a Poisson groupoid with Lie bialgebroid
(AG x R, A*G x R).
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We will see that the 2-vector (o x R) Ly/a A + A is affine. For this purpose, we will
use the following relation:
<

<<

aP 5
Loy P = o for P e MAMAG x R)). (5.29)

Note thatP is a time-dependent section of the vector bundiéAG) — M and, thus, one
may consider the derivative @f with respect to the timeiP/or.

From(5.29)andProposition 4.6we conclude that the vector fiebdor is affine. Conse-
quently (see Proposition 2.5 jA1]), the 2-vector£a/3,]1 + A is also affine.

Next, we will show that the Poisson structufeis homogeneous with respect to the
vector fieldd/dr. This fact implies thafA is the Poissonization of a Jacobi structare E)
on G (seeRemark 2.). Moreover, fromPropositions 5.7 and 5.8e will have thattG =
M, A, E, o) is a Jacobi groupoid with generalized Lie bialgebr@i@G, ¢o), (A*G, Xo)).

Therefore, we must prove that is homogeneous. Now, using Theorem 2.631]
and sinceG is a-connected and the 2-vectdi,, A + A is affine, we deduce that is
homogeneous if and only if:

(i) the derivative of the 2-vectofs /s A + A is zero,
(ii) the restriction of the 2-vectafy/y A + A to the points ok, (M x R) is zero.

First, we will show (i). If H is a Poisson groupoid with Poisson structar@nd Lie
algebroidAH, we have that (see Theorem 3.1[42])

Lom=—d.X (5.30)

for X € I'(AH), where d is the differential of the dual Lie algebroid*H. Thus, from
(5.29) and (5.30Q)it follows that

(X0 x)
. - x 0%
Lo (LyuA+A) = LoyyalsA— EéXTBtA + E%A d 09X p” —dXox — gt

for X € I'(AG x R). On the other hand, using the result§if] (see Remark B.3 ifL.7]),
we obtain that

dXoz =e™* (622 + Xo A (Z + 88—?)) for Z € IAG x R),
d0 being the differential of the Lie algebroidt*G x R, [,1.°, 59). Consequently, we
deduce that
Lo (LypA+A) =
Next, we will show (ii). If (x, #) is a point of M x R, then
TY 00 (G X R) = A7, (G x R) @ (o) ") (T, (M x R)).
Therefore, it is enough to prove that

(Lojpe A+ A)YSF1, 8F2)|e, (uxr) = 0,
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when F1 and F» are either constant arg (M x R) or equal to(a,)* f;, with f; € C*°(M x
R,),i =1, 2. We will distinguish three cases.

First case Suppose thaty = (a,)* f1 and Fo = (a,)* f2, with f1, fo € C*(M x
R, R). Denote byAq the Poisson structure oW x R induced by the Lie bialgebroid
(AG x R, A*G x R) and by{, } ; (respectively{, }Ao) the Poisson bracket o6 x R

(respectivelyM x R) associated witht (respectivelyA). Then, fromProposition 5.and
since the vector field/dr on G x R is a,-projectable, it follows that
(Lo A+ A)(SF1, 8F2)
% 0 ~ 3f1 afZ ~
=af (at{fl, f2} 4, { o ,fz}AO {fl, ” } + {f1, fz}A0>.

Ao

Thus, using that the Poisson structutg is homogeneous with respect to the vector field
9/0t on M x R (seeTheorem 2.1 we obtain that

(Lojae A+ A)(SF1, 8F) = 0.

Second caseSuppose thaF; = (aq)* f1, with f1 € C®(M x R, R) and thatF; is
constant or, (M x R). Following the proof of Lemma 4.12 i{31], we deduce that

e
{(ao)* fi H} 3 = ((p£°)*(8f)) (H) (5.31)
for f € C*°(M x R,R) andH € C*°(G x R, R). Note that (se€2.23)
(PF)* (@ + g81) = €7 ((0:)* (@) + g¥0) (5.32)

for g € C®(M x R,R) andw a time-dependent 1-form oM. Therefore, from(5.29),
(5.31) and (5.32and sincé)F»/at = 0, we have that

(LojnA + A)(SF1, 5F2)

0 x5 a DI P
= - [5, (ﬁf“)*@fl)] (F2) — (py0)* <5 (%))(Fz) — (PO (8f)(F2)
9 a DS P
= 5((/3550)*((%)) — (X" (5 (%)) — (PF)* (8f1)(F2) = 0.

Third case Suppose thaft; andF, are constant o, (M xR). Then, using thad, (M xR)
is a coisotropic submanifold @f5 x R, A), it follows that

FL 233 ey = 0

Moreover, sincéFy /ot = dF/dt = 0 and the restriction te, (M x R) of the vector field
d/0t is tangent ta, (M x R), we conclude that

(Lojan A+ A)SF1, 8F2) e, mxr) = 0. -
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Example 5.10.

1. Lie bialgebroids
Let (AG, A*G) be a Lie bialgebroid wher&Gis the Lie algebroid of an-connected
anda-simply connected Lie groupoid — M. Then, usingTheorem 5.9see also
Examples 4.3), we obtain that there exists a unique Poisson structuom G that
makes(G = M, A) into a Poisson groupoid with Lie bialgebroidG, A*G). This
result was proved if81].
2. Generalized Lie bialgebras
If G is a connected Lie group with identity element : G — R is a multiplicative
function andA is ac-multiplicative 2-vector such that the intrinsic derivativetfate
is zero, them identically vanishes (sg&8]).
Let((g, ¢0)(g*, Xo)) be ageneralized Lie bialgebra, i.e. a generalized Lie bialgebroid
over a single point, and be a connected simply connected Lie group with Lie algebra
g. Then, using5.9), Proposition 4.4ndTheorem 5.9ve deduce the following facts: (a)
there exists a unique multiplicative functien: G — R and a unique-multiplicative
2-vectorA on G such that(do)(e) = ¢o and the intrinsic derivative ot ate is —d,x,.

d.x, being theX-differential of the Lie algebrg*; (b) #4 (0) = 70 — e*"f(_o and (c)
the pair(A, E) is a Jacobi structure oi, whereE = —X_>o. These results were proved
in [18] (see Theorem 3.10 i1.8]).
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